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Abstract

Purpose: The purpose of this study is to use a molecular docking approach to identify potential estrogen mimics
or anti-estrogens in phytochemicals found in popular dietary herbal supplements.

Methods: In this study, 568 phytochemicals found in 17 of the most popular herbal supplements sold in the United
States were built and docked with two isoforms of the estrogen receptor, ERa and ERp (a total of 27 different protein
crystal structures).

Results: The docking results revealed six strongly docking compounds in Echinacea, three from milk thistle (Silybum
marianum), three from Gingko biloba, one from Sambucus nigra, none from maca (Lepidium meyenii), five from chaste

and Tribulus terrestris had six compounds.

tree (Vitex agnus-castus), two from fenugreek (Trigonella foenum-graecum), and two from Rhodiola rosea. Notably,

of the most popular herbal supplements for women, there were numerous compounds that docked strongly with
the estrogen receptor: Licorice (Glycyrrhiza glabra) had a total of 26 compounds strongly docking to the estrogen
receptor, 15 with wild yam (Dioscorea villosa), 11 from black cohosh (Actaea racemosa), eight from muira puama
(Ptychopetalum olacoides or P. uncinatum), eight from red clover (Trifolium pratense), three from damiana (Turnera
aphrodisiaca or T. diffusa), and three from dong quai (Angelica sinensis). Of possible concern were the compounds
from men’s herbal supplements that exhibited strong docking to the estrogen receptor: Gingko biloba had three
compounds, gotu kola (Centella asiatica) had two, muira puama (Ptychopetalum olacoides or P. uncinatum) had eight,

Conclusions: This molecular docking study has revealed that almost all popular herbal supplements contain
phytochemical components that may bind to the human estrogen receptor and exhibit selective estrogen receptor
modulation. As such, these herbal supplements may cause unwanted side effects related to estrogenic activity.

Keywords: Molecular docking; Estrogen receptor; Herbal supplements

Background

The use of alternative medicines in the United States,
particularly herbal supplements, has dramatically increased
since the beginning of the 21st century (Figure 1). Filling
American minds with promises of enhanced beauty,
sharper senses, and optimum organ functions, herbal
supplements claim to increase, or improve almost all issues
a person could have with their body. Without a doubt it is
appealing to have problems solved by simply swallowing a
pill or drinking a tea, not much effort required, however it
has been widely ignored the consecutive consequences
these supplements can provide (Cupp 1999).
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Two major factors play a part in the ongoing, unnoticed
herbal supplement crisis: Regulations for herbal supple-
ments and uneducated consumers. Beginning with the first,
the United States does not classify herbal supplements as
drugs, and therefore supplements are not required to
undergo the extensive testing that pharmaceutical drugs do
before put on the market. Courtesy of the “Dietary
Supplement Health and Education Act of 1994”, herbal
supplements are not evaluated by the Food and Drug
Administration (Calixto 2000) making it easy for supple-
ment companies to rapidly introduce new supplements to
consumers, with or without the knowledge of possible
harmful side effects. Unspecified drugs, contaminations,
toxins, and/or heavy metals (Au et al. 2000) can be included
in an herbal supplement, and since companies are not
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Figure 1 Relationship between herbal supplement purchases in the United States and the year.

Year

required to subject their products to quality analysis, this
spectrum of harmful compounds could be digested by a
consumer and induce adverse effects. As for the second,
biologically uneducated consumers do not understand or
simply do not consider the concept that plants are not
always beneficial. They believe anything that is natural must
be good for their health and safe to consume (Stonemetz
2008), which is far from the truth. Plants contain hundreds
of phytochemicals, some of which are indeed toxic to
the human body. One class of phytochemicals of major
concern, which is the focus of this study, phytoestrogens,
can interfere and react with the human estrogen receptors,
which regulate neural, skeletal, cardiovascular, and repro-
ductive tissues. This interference, however, is not always ad-
verse. For example, some phytoestrogens can promote
carcinogenic growth, while others can inhibit the growth.
The purpose of this study was to identify potential estro-
gen mimics or anti-estrogens in phytochemicals found in
popular dietary herbal supplements. The data gathered
can only suggest the possibility of a phytochemical to be
an anti-estrogen or a mimic, not confirm its estrogenic
properties. It is our hope that the discoveries made during
this study can help to identify the estrogenic activity of the
phytochemicals examined. This information can then lead
to the health benefits or hazards associated with the
phytochemicals, which in turn could greatly affect the
increasingly popular herbal supplement movement.

Methods

Literature survey

A literature survey on herbal supplements was carried out
to identify the most popular general [Echinacea, milk thistle
(Silybum marianum), Ginkgo biloba, Sambucus nigra, maca
(Lepidium meyenii), chaste tree (Vitex agnus-castus), fenu-
greek (Trigonella foenum-graecum), and Rhodiola roseal,
women’s [damiana leaf (Turnera aphrodisiaca, T. diffusa),

muira puama (Ptychopetalum olacoides, P. uncinatum),
black cohosh (Actaea racemosa = Cimifuga racemosa),
licorice root (Glycyrrhiza glabra), wild yam (Dioscorea
villosa), dong quai (Angelica sinensis) and red clover
(Trifolium pretense)], and men’s [Gingko biloba, gotu kola
(Centella asiatica), muira puama (Ptychopetalum olacoides,
P. uncinatum), and Tribulus terrestris] herbal supplements
advertised and used in the United States. A survey of the
literature, including the Dictionary of Natural Products
(2014) and Duke’s Phytochemical Database (1998), was
carried out to determine the phytochemical constituents of
each herb.

Molecular modeling of phytochemicals

Each phytochemical ligand structure (see Figures 2, 3, 4, 5,
6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, 40, 41, 42, and 43) was built using Spartan '14 for
Windows (2013). For each ligand, a conformational search
and geometry optimization was carried out using the
MMEFF force field (Halgren 1996).

Molecular docking

Protein-ligand docking studies were carried out based on
the crystal structures of human estrogen receptor o [ERa:
PDB 1X7E (Manas et al. 2004a), PDB 1X7R (Manas et al.
2004b), and PDB 3ERD (Shiau et al. 1998)] and human
estrogen receptor [ [ERP: PDB 1U3Q, 1U3R, 1U3S
(Malamas et al. 2004), 1U9E, 1X7B, 1X76, 1X78 (Manas
et al. 2004a), and 1X7] (Manas et al. 2004b)]. Prior to
docking all solvent molecules and the co-crystallized
ligands were removed from the structures. Molecular
docking calculations for all compounds with each of the
proteins were undertaken using Molegro Virtual Docker
v. 6.0 (2013). Potential binding sites in the protein struc-
tures were identified using the grid-based cavity prediction
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Figure 2 Alkaloid ligands examined in this work.
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algorithm of the Molegro Virtual Docker (2013) program.
The location of the volume used by the docking search
algorithm was positioned at the center of the cavity and a
sphere (15 A radius) large enough to encompass the entire
cavity of the binding site of each protein structure was
selected in order to allow each ligand to search. If a co-
crystallized inhibitor or substrate was present in the
structure, then that site was chosen as the binding site. If
no co-crystallized ligand was present, then suitably sized
(>50 A%) cavities were used as potential binding sites. The
docking searches were constrained to those cavities.
Standard protonation states of the proteins based on neu-
tral pH were used in the docking studies. Each protein
was used as a rigid model structure; no relaxation of the
protein was performed. Assignments of charges on each

protein were based on standard templates as part of the
Molegro Virtual Docker (2013) program (Thomsen and
Christensen 2006); no other charges were necessary to be
set. Flexible ligand models were used in the docking and
subsequent optimization scheme. As a test of docking ac-
curacy and for docking energy comparison, co-crystallized
ligands were re-docked into the protein structures (see
Table 1). Additionally, as positive controls, the known
estrogenic compounds 17(-estradiol and a-zearalenone
were docked with each protein structure in order to com-
pare docking energies with the herbal phytochemicals.
Different orientations of the ligands were searched and
ranked based on their energy scores. The RMSD threshold
for multiple cluster poses was set at <1.00 A. The docking
algorithm was set at maximum iterations of 1500 with a



Powers and Setzer In Silico Pharmacology (2015) 3:4

Page 4 of 63
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simplex evolution population size of 50 and a minimum
of 30 runs for each ligand. Each binding site of oligomeric
structures was searched with each ligand. The lowest-
energy (strongest-docking) poses for each ligand in each
protein target are summarized in Tables 2, 3, 4, 5, 6, 7, 8,
9,10, 11, 12, 13, 14 and 15.

Results

Alkaloids

The alkaloid ligands examined in this study are shown in
Figure 2. The molecular docking results for the alkaloids
are summarized in Table 2. Of the alkaloids examined in
this study, cis- and trans-clovamide, with docking energies
of -119.8 and -113.6 kJ/mol, respectively, and N-trans-
feruloyltyramine (Egoc = -103.1 kJ/mol) were found to
dock well with ERa. Their docking energies were more
exothermic than those of estradiol, —92.0 kJ/mol and the
corresponding co-crystallized ligand genistein, —93.4 kJ/mol,
and the clovamides were more exothermic than zearale-
none (Egoek = —-104.1 kJ/mol). The co-crystallized ligand,

genistein, and the clovamide and feruloylyramine ligands
have similar positions in the binding site (Figure 44). Phe
404, Leu 525, Leu 346, Leu 387, and Leu 391 form a
hydrophobic pocket around the docked alkaloids. Phe
404 exhibited edge-to-face m—m interactions between the
phenyl substituent of Phe with the caffeic or ferulic sub-
stituents of the alkaloids and with the hydroxyphenyl
substituent of genistein. Notable hydrogen bonds in the
lowest-energy docked pose of cis-clovamide were the 3-
OH and 4-OH of the cis-caffeic moiety with the carboxyl-
ate residue of Glu 353 and the 3-OH group with the
guanidine residue of Arg 394 (Figure 45). The docked
trans-clovamide had hydrogen bonds between the 4-OH
of the caffeate with the guanidine of Arg 394 and the
carbonyl group of Leu 387 and the 3-OH group with the
carboxylate of Glu 353. Hydrogen bonds were formed
between the 4-OH group on the ferulyl substituent of
N-trans-feruloyltyramine and carbonyl group of Leu 387,
the guanidine group of Arg 394, and the carboxylate of
Glu 353.
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Similarly, cis-clovamide, trans-clovamide, and N-trans-fer-
uloyltyramine were the alkaloids that docked well with ERp.
Their docking energies (-124.9, ~122.0, and -113.8 kJ/mol,
respectively) were more exothermic than those of estradiol,
-100.0 KkJ/mol, zearalenone, -104.9 kJ/mol, and the
corresponding co-crystallized ligand 2-(3-fluoro-4-hydroxy-
phenyl)-7-vinyl-1,3-benzoxazol-5-ol, -107.9 kJ/mol. The
alkaloid and the co-crystallized ligand occupied similar posi-
tions in the binding site, a hydrophobic pocket formed by
Leu 298, Phe 356, Leu 339, and His 475. Phe 356 exhibited
edge-to-face m—m interactions with the caffeic or ferulic
substituents of the docked alkaloid ligands as well as with
the hydroxyphenyl substituent of the co-crystallized ligand.
There were two notable hydrogen bonds formed between
the 4-OH group on the ferulyl substituent of N-trans-feru-
loyltyramine and the guanidine group of Arg 346, and the
carboxylate of Glu 305 (Figure 46). These same two residues
formed hydrogen bonds with the 4-hydroxyphenyl group of

the co-crystallized ligand. The caffeoyl group of cis-clova-
mide formed hydrogen bonds with Glu 305 and Leu 298.
trans-Clovamide, however, formed hydrogen bonds with
Leu 339, Arg 346, and Glu 305.

Chalcones

The structures of the chalcones are shown in Figure 3,
while the docking energies are summarized in Table 3.
Xanthohumol was the strongest docking chalcone with
ERa. Its docking energy, —116.8 kJ/mol, is more exother-
mic than those of estradiol, —92.0 kJ/mol, zearalenone,
-104.1 KkJ/mol, and the corresponding co-crystallized
ligand genistein, -93.4 kJ/mol. The 4-OH group of
xanthohumol forms three hydrogen-bonds with the
protein (the carboxylate of Glu 353, the guanidine of Arg
394, and the carbonyl oxygen of Phe 404). The 4'-OH
group of xanthohumol forms hydrogen-bonds with the
imidazole N-H of His 524 and the carbonyl oxygen of Gly
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521. Kanzonol Y (Egoq = —111.2 kJ/mol) and licochalcone
B (Egock = -107.8 kJ/mol) were the only other chalcone
ligands to dock well with ERa.

Of the chalcone ligands examined, kanzonol Y (Egoqc =
—-122.4 kJ/mol), xanthohumol (Egyq = -116.8 kJ/mol), and
licoagrochalcone A (Egocc = -115.5 kJ/mol), docked best
with ERB. Their docking energies were decidedly more
exothermic than those of estradiol, zearalenone, and the
corresponding co-crystallized ligand 2-(5-hydroxy-naphtha-
len-1-yl)-1,3-benzooxazol-6-ol (Eqec = —109.2 kJ/mol). Ap-
parently, the hydrophobic prenyl groups allow for stronger
docking. Thus, kanzonol Y docked to ERB much better
than the non-prenylated «,2,4,4"-tetrahydroxydihydrochal-
cone (Egock = —105.0 kJ/mol). In the lowest-energy docked
pose of kanzonol Y, the 3-prenyl group is sandwiched
between the hydrophobic residues of Phe 356 and Leu 339,

while the 5'-prenyl group is sandwiched between Leu 476
and Thr 299 (Figure 47). It has been shown that prenylation
of flavonoids and related compounds does alter the estro-
genic activity and often results in antiestrogenic activity
(Kretzschmar et al. 2010; Simons et al. 2012).

Coumarins

The MolDock docking energies of the coumarins are
summarized in Table 4, and the structures of the coumarins
are shown in Figures 4 and 5. Glabrene and pratenol B
were the strongest docking coumarins with ERa (Egocrc =
-104.8 kJ/mol), more exothermic than either estradiol
(=92.0 kJ/mol) or genistein (-93.4 kJ/mol), and comparable
to zearalenone (-104.1 kJ/mol). The 7-hydroxychromene
moieties of both glabrene and pratenol B are held in a
hydrophobic pocket formed by Leu 387, Phe 404, Met 388,
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and Leu 391. Furthermore, there are edge-to-face m—m
interactions between Phe 404 and the chromene benzene
rings of the ligands, as well as hydrogen bonds between the
7-OH group of the chromene and the guanidine group of
Arg 394 and the carboxylate of Glu 356, analogous to the
co-crystallized ligand genistein. Additionally, one of the
carboxylates of pratenol B forms a hydrogen bond with
imidazole substituent NH group of His 475.

In addition to glabrene (Ego = —114.9 kJ/mol) and pra-
tenol B (Egock = —112.0 kJ/mol), mirificoumestan docked
strongly with ERP with a docking energy of —113.0 kJ/mol.
These compounds docked more exothermically than
estradiol, zearalenone, or the co-crystallized ligand [5-hy-
droxy-2-(4-hydroxyphenyl)-1-benzofuran-7-yl]acetonitrile
(Egock = —107.7 kJ/mol). Glabrene docked into the hydro-
phobic pocket formed by Leu 298, Leu 339, and Phe 356.

Phe 356 exhibited edge-to-face m— interactions with the
hydroxychromene substituent of glabrene. There was a
hydrogen bond between the imidazole substituent NH
group of His 475 and the 5'-OH group of glabrene, and
three hydrogen bonding interactions were seen between
the 7-OH group of glabrene and the carbonyl group of
Leu 339, the guanidine moiety of Arg 346, and the
carboxylate of Glu 305.

Diterpenoids

The structures for the diterpenoid ligands examined in this
work are shown in Figures 6, 7, 8, and 9, and the docking
energies are listed in Table 5. The strongest docking
diterpenoids with ERa were diosbulbin F, diosbulbin K, and
diosbulbin L (Egoq=-111.2, -112.1, and -110.8 kJ/mol,
respectively). Each of these ligands docked in the
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hydrophobic binding pocket with the furan group forming
a hydrogen bond to the guanidine of Arg 394. The methyl
ester of diosbulbin F and the carboxylate of diosbulbin L
also formed hydrogen bonds to the imizadole of His 524.
These three diterpenoids also docked strongly to ERp. In
addition, diosbulbin F, diosbulbin H, ptycho-6a,7a-diol, and
ptycholide IV all had docking energies more exothermic
(Eqoek = —-114.8, —114.1, -122.9, and -114.7 kJ/mol) than
the co-crystallized ligand, 2-(5-hydroxynaphthalen-1-yl)-1,3-

benzooxazol-6-ol (E4oq = —111.3 kJ/mol). Ptycho-6a,7a-diol
docked with ERp with hydrogen bonds between the lactone
carbonyl of the ligand and Arg 346 and the 6-OH group of
the ligand with His 475.

Flavonoids

The structures of the flavonoid ligands examined in this
work are shown in Figures 10, 11, 12, 13, 14, 15, 16, and
17, and the docking energies are listed in Table 6. Of the
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flavonoids, luteolin-8-propenoic acid docked the strongest
to ERa, with a docking energy of —113.127 kJ/mol, more
exothermic than those of estradiol, zearalenone, or genis-
tein. A common docking orientation for phenolic ligands
in ERa is the hydrophobic pocket of Leu 387, Phe 404,
Met 388, and Leu 391, along with edge-to-face n—m inter-
actions with Phe 404, and hydrogen bonds between the
phenolic —OH group and the guanidine group of Arg 394
and the carboxylate of Glu 356. The 7-OH group of the
ligand made an additional hydrogen bond with the
carbonyl oxygen of Gly 521. No other flavonoid ligands
showed notably strong docking with ERa.
Luteolin-8-propenoic acid was also the strongest docking
flavonoid with ERP (Egoc = —123.1 kJ/mol), is far more exo-
thermic than estradiol, zearalenone, and the co-crystallized
ligand, 2-(3-fluoro-4-hydroxyphenyl)-7-vinyl-1,3-benzoxazol-

5-0l (Egock = -106.2 kJ/mol). As observed in other phen-
olic ligands with ERp, luteolin-8-propenoic acid occupied
the hydrophobic pocket formed by Leu 298, Leu 339, and
Phe 356; edge-to-face m—m interactions of the phenolic
ligand with Phe 356 and hydrogen boding of the phenolic
—OH group with the carbonyl group of Leu 339, the guan-
idine group of Arg 346, and the carboxylate of Glu 305.
The 7-OH group of the ligand made additional hydrogen
bonds with the carbonyl oxygen of Gly 472 and His 475.
Casticin  (Egoer = —-106.4  kJ/mol), gonzalitosin (Egocr =
-106.3 kJ/mol), gossypetin (Eqock = —105.7 kJ/mol), larici-
trin (Eqoqc = —107.3 kJ/mol), myricetin (Egoq = —106.2 kJ/mol),
quercetin = (Egoac=—-106.0 kJ/mol), santin (Egoer =
-108.0 kJ/mol), and tricetin (Egqoq = —106.2 kJ/mol), all
had more exothermic docking energies than estradiol
or zearalenone but were less exothermic than the co-
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crystallized ligand, 2-(5-hydroxynaphthalen-1-yl)-1,3-ben-
200xazol-6-0l (Egger = —111.3 kJ/mol).

Isoflavonoids

The docking energies of the isoflavonoids are summa-
rized in Table 7 and the structures are shown in
Figure 18, 19, and 20. Genistein is the quintessential es-
trogenic isoflavonoid, but it is a weaker docking ligand
than estradiol or zearalenone for either ERa or ERB. The
strongest docking isoflavonoid with ERa was the agly-
cone of licoagroside A (Egock = —100.5 kJ/mol), but this
was weaker than zearalenone. On the other hand, several
isoflavonoid ligands docked to ERP more strongly than
zearalenone: licoagroside A aglycone (Eqoe = -107.7 kJ/
mol), 1-methoxyphaseollin (Egoc =—-110.5 kJ/mol), pra-
tensein (Egock = —106.4 kJ/mol), and 3°,5,7-trihydroxy-5'-

methoxyisoflavone (Egoc = -107.9 kJ/mol), but none of
these docked more strongly than the synthetic co-
crystallized ligand, 2-(5-hydroxynaphthalen-1-yl)-1,3-
benzooxazol-6-0l (Egq = —111.3 kJ/mol).

Lignans

The structures and the docking energies of the lignans are
shown in Figure 21 and Table 8, respectively. Nortrachelo-
genin and 7'-hydroxymatairesinol were the strongest
docking lignans to ERa (Eqoc = —112.0 and -112.3 kJ/mol,
respectively). Nortrachelogenin was also the strongest
docking lignan to ERP (Egeck = —125.4 kJ/mol). Sesamin
showed notable selectivity for ERP over ERa (Egock =
-121.8 and -99.1 kJ/mol, respectively). Nortrachelogenin
occupied the same orientation and hydrogen-bonding
pattern in both ERa and ERp, with one of the phenolic
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OH Isorhamnetin

—OH groups hydrogen bonded to argenine in the binding
pocket (Arg 394 in ERa; Arg 346 in ERp) and the other
phenolic —OH group hydrogen bonded to the histidine
(His 524 in ERa; His 475 in ERp).

Phenanthrenoids

The docking energies and structures of phenanthrenoids
are shown in Table 9 and Figure 22, respectively. None of
the phenanthrenoids examined in this work showed
docking energies lower than estradiol or zearalenone for
ERa or ERp.

Miscellaneous phenolics
The docking energies for miscellaneous herbal phenolic
compounds are listed in Table 10, and the structures are

shown in Figures 23, 24, and 25. The strongest docking
ligands of the miscellaneous phenolic compounds for ERa
was cimicifugic acid F (Egoe = -126.2 kJ/mol), and this
ligand also docked strongly with ERP (Egee = -125.2 kJ/
mol). Several other phenolic ligands docked with very
exothermic energies to ERp: the aglycone of agnucastoside
C (Egock =-130.0 kJ/mol), caffeoyl-p-coumaroyl tartaric
acid (Egock = —129.8 kJ/mol), cimiracemate B (Egock =
-127.3 kJ/mol), cimiracemate D (Eqoc = —128.5 kJ/mol),
and fukinolic acid (Egoer = —127.3 kJ/mol).

Analogous to other phenolic compounds (see above),
the cinnamate moiety of the lowest-energy pose of
cimicifugic acid F in ERa shows edge-to-face m—m inter-
actions with Phe 404, and hydrogen bonding between
the —OCH3; group and the guanidine group of Arg 394.
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Additionally, the 3-carboxylate group of the ligand is
hydrogen-bonded to His 524, and the phenolic group fits
into a hydrophobic pocket formed by Met 388, Met 421,
and Ile 424.

The lowest-energy docked pose of the aglycone of
agnucastoside C with ERp, as with other phenolic com-
pounds (see above), has the p-coumarate phenolic ~-OH
group hydrogen bonded to the carbonyl group of Leu
339 and the guanidine group of Arg 346, and edge-to-
face m—m interactions of the phenolic ligand with Phe
356. The cyclic hemiacetal group is hydrogen bonded to
His 475.

Sesquiterpenoids

Of the sesquiterpenoids, only cinnamoylechinadiol gave a
notable docking energy (-120.8 kJ/mol) with ERp (Figure 26,
Table 11).

Steroids

The steroidal ligands examined in this study are shown in
Figures 27, 28, 29, 30, 31, 32, 33, and 34, and their docking
energies are listed in Table 12. Several pregnane steroids
exhibited docking energies less than the co-crystallized
ligand 2-(5-hydroxynaphthalen-1-yl)-1,3-benzooxazol-6-ol
(Eqock = —111.3 kJ/mol) for ERp: 2,3-Dihydroxypregn-16-
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en-20-one (Egoq = —116.6 kJ/mol), 3,16-dihydroxypregn-5-
en-20-one (Egoac = -116.6 kJ/mol), 3,21-dihydroxypregna-
5,16-dien-20-one (Eqoc = —121.4 kJ/mol), and pregnadieno-
lone (Egou =—-115.4 kJ/mol). The lowest-energy docked
poses of the pregnane ligands show them all to adopt the
same orientation (Figure 48) with key hydrogen-bonding
interactions of the 3-OH group of the steroids with the guan-
idine of Arg 346 and the amide carbonyl of Leu 339, and the
20-ketone group of the ligand with the imidazole N-H of His
475. Two ligands, 3,16-dihydroxypregn-5-en-20-one and
3,21-dihydroxypregna-5,16-dien-20-one, showed selectivity
for ERf over ERa (24.8 and 18.4 kJ/mol, respectively).

Stilbenoids
Structures and docking energies for the stilbenoid ligands
are shown in Figures 35 and 36, and Table 13, respectively.

Several stilbenoid ligands showed notably strong docking
energies; lower than estradiol, zearalenone, or the
respective co-crystallized ligands: 3-acetoxy-4',5-dihy-
droxy-3’-prenyldihydrostilbene (Egoc to ERa=-119.0 kJ/
mol), licoagrodione (Eqoex to ERP=-116.9 kJ/mol),
3,3",4,5 -tetrahydroxy-4',5-diprenylbibenzyl (Egoc to ERB
=-117.1 kJ/mol), 3,3",4,5'-tetrahydroxy-5-prenylbibenzyl
(Eqock to ERP =-115.0 kJ/mol), and uralstilbene (Egoci to
ERP =-122.1 kJ/mol). Prenylation of stilbenoids seems to
improve docking energies by about 20 kJ/mol.

Triterpenoids

Docking energies are presented in Table 14 and structures
of triterpenoid ligands are illustrated in Figures 37, 38, 39,
40, and 41. Unlike the pregnane steroids, there were no
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triterpenoid ligands that showed good docking with either
ERa or ERp.

Miscellaneous phytochemicals

Several miscellaneous phytochemicals found in herbal
supplements were included in this study (Table 15,
Figures 42 and 43). Of these ligands, orobanchyl acetate
gave excellent docking energies for both ERa and ERP
(Egqock = —111.3 and —122.8 kJ/mol, respectively).

Discussion

Angelica sinensis

Dong quai (Angelica sinensis root) has been used in
Chinese traditional medicine for thousands of years for
various female health conditions (e.g., dysmenorrhea, pel-
vic pain, symptoms of menopause) (Chye 2006; Al-Bareeq

et al. 2010; Fang et al. 2012). In spite of its history, dong
quai provided no clinical relief of menopausal symptoms
(Hirata et al. 1997). In fact, dong quai has been shown to
stimulate the growth of MCF-7 (ER+ human mammary
carcinoma) cells (Lau et al. 2005), but does not bind either
ERa or ERB (Liu et al. 2001). The plant contains several
miscellaneous phytochemicals, only two of which have
notable docking energies, 10-angeloylbutylphthalide
(-107.1 kJ/mol with ERp) and angeliferulate (-110.7 and
-121.5 kJ/mol with ERa and ERp, respectively).

Centella asiatica

Centella asiatica (gotu kola) has been used in Ayurvedic
traditional medicine for cognitive enhancement (Rao et al.
2005), to alleviate symptoms of anxiety and promote relax-
ation (Wijeweera et al. 2006), as well as for headache, body
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Figure 16 Additional flavonoid ligands examined in this work.

ache, asthma, ulcers, and wound healing (Kumar and
Gupta 2002). Animal studies have revealed cognitive
enhancement (Kumar and Gupta 2002; Rao et al. 2005),
neuroprotective (Subathra et al. 2005), and anxiolytic
(Wijeweera et al. 2006) effects. To our knowledge, there
have been no reports on the estrogenic activity of C.
asiatica.

The plant contains the flavonoids castillicetin, castilliferol,
kaempferol, and quercetin; the triterpenoids 2,3,20,23-tetra-
hydroxy-28-ursanoic acid, 2,3,23-trihydroxy-20-ursen-28-
oic acid, 2,3-dihydroxy-5-(hydroxymethyl)-24-norolean-12-
en-28-oic acid, 3,6,23-trihydroxy-12-ursen-28-oic acid, 6p-
hydroxymaslinic acid, asiatic acid, asiaticoside G, betulafo-
lienetriol, centellasapogenol A, centelloside A, corosolic
acid, isothankunic acid, madasiatic acid, madecassic acid,

quasipanaxadiol, terminolic acid, uncargenin C and zemo-
side A; the steroid campesterol, and the miscellaneous
compounds asiaticin, homosilphiperfoloic acid, and irbic
acid. Both quercetin and asiaticin had notable exothermic
docking energies with ERP (-106.0 and -109.0 kJ/mol,
respectively). Quercetin has shown preferential binding to
ERP (Kuiper et al. 1998).

Cimicifuga racemosa (syn. Actaea racemosa)

Although black cohosh extracts have demonstrated
clinical efficacy against some symptoms of menopause
(Lieberman 1998; McKenna et al. 2001; Liske et al. 2002;
Pockaj et al. 2004; Wuttke et al. 2006), several studies have
demonstrated little or no estrogenic activity (Liu et al.
2001; Kronenberg 2003; Lupu et al. 2003; Mahady 2003).
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Figure 17 Additional flavonoid ligands examined in this work.

The efficacy of C. racemosa extracts on post-menopausal
symptoms has been attributed to partial agonism of the
serotonin receptor (Burdette et al. 2003) and the p-opiate
receptor (Rhyu et al. 2006).

C. racemosa extracts have revealed several triterpenoids
(Shao et al. 2000), phenylpropanoids (Chen et al. 2002) and
caffeic acid derivatives (Li et al. 2003). Very few of the C.
racemosa triterpenoids showed negative docking energies
and are, therefore, unlikely estrogen receptor binding
agents. Several C. racemosa phenolic compounds did show
remarkable docking affinities for both ERa and ER:
cimicifugic acid A, cimicifugic acid B, cimicifugic acid G,
cimiciphenol, cimiciphenone, cimiracemate A, cimirace-
mate B, cimiracemate C, cimiracemate D, and fukinolic
acid. It is likely that any estrogenic activity of C. racemosa
extract (Seidlova-Wuttke et al. 2003a) is due to the pres-
ence of phenolic components rather than triterpenoids.

Dioscorea villosa

The rhizomes of wild yam, Dioscorea villosa, have been
used to treat symptoms associated with menopause and
premenstrual syndrome (PMS) as well as to relieve labor
pains and sooth dysmenorrhea (Dutta 2015). The genus
contains numerous steroidal glycosides (Sautour et al. 2006;
Sautour et al. 2007; Ali et al. 2013). In this work, we have
carried out in-silico screening of phytochemicals from the

genus Dioscorea (Dictionary of Natural Products 2014). Of
these, the diosbulbins D, F, H, J, K, and L (diterpenoids
from D. bulbifera (Komori 1997; Liu et al. 2010) gave
remarkable docking energies with both ERa and ERp while
the pregnane steroids 3,16-dihydroxypregn-5-en-20-one,
3,21-dihydroxypregna-5,16-dien-20-one, ergost-5-ene-3,26-
diol, and pregnadienolone, showed selective docking with
ERp. Interestingly, neither furostane nor the spirostane
steroids, common in Dioscorea spp. docked well with the
estrogen receptors. It is worth noting that clinical studies
have shown D. villosa to have little effect on menopausal
symptoms (Komesaroff et al. 2001).

Echinacea spp.

Echinacea (E. angustifolia, E. pallida, and E. purpurea) is
one of the most popular herbal supplements sold in the
United States and has been used as a treatment for the
common cold, coughs, bronchitis, upper respiratory infec-
tions, and inflammatory conditions (Percival 2000). Recent
studies have demonstrated Echinacea to exhibit immune-
system-stimulating activity (Block and Mead 2003).
Phytochemicals that have been isolated from Echinacea
spp. include chicoric acid and monomethyl and dimethyl
ethers, trichocarpinine, cinnamoylechinadiol, cinnamoyle-
chinaxanthol, cinnamoylepoxyechinadiol, cinnamoyldihy-
droxynardol, caftaric acid, caffeoyl-p-coumaroyltartaric
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acid, burkinabin A, burkinabin B, kaempferol, luteolin,
and quercetin. Although Echinacea has not shown estro-
genic activity (Zava et al. 1998), six phytochemicals were
identified in this docking study that showed strong dock-
ing to the estrogen receptor: the flavonoid quercetin; the
phenolic compounds caffeoyl-p-coumaroyltartaric acid,
caftaric acid, and chicoric acid; and the sesquiterpenoids
cinnamoylechinadiol and cinnamoylepoxyechinadiol.

Gingko biloba

G. biloba is commonly used as a supplement to improve
cognitive abilities (Kennedy et al. 2000), and for women
specifically, it has been used to treat some of the side ef-
fects accompanying menopause (Oh and Chung 2004).

The extracts of G. biloba have previously been shown to
exhibit feeble estrogenic effects, and act as selective estro-
gen receptor modulators (SERMs) with the a and f estro-
gen receptors (Oh and Chung 2006). Phytochemical
analyses have revealed G. biloba extracts to contain the
flavonoids (2R,35,4S5)-3,3",4,4",5,5’,7-heptahydroxyflavan,
8-(5-carboxy-2-methoxyphenyl)-5,7-dihydroxy-4'-meth-
oxyflavone, acacetin, amentoflavone, apigenin, bilobetin,
5'-methoxybilobetin, epigallocatechin, ginkgetin, isogink-
getin, kaempferol, luteolin, quercetin, sciadopitysin, and
tricetin, as well as the lignan sesamin, the sesquiterpenoids
bilobanol, and the steroid globosterol. Of these, quercetin,
tricetin, and sesamin gave large negative docking energies.
Sesamin, in particular, docked strongly with ERf.
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Glycyrrhiza glabra

The phytochemistry of Glycyrrhiza glabra has been well
studied and numerous compounds have been isolated
and identified, including aurones (licoagroaurone and
licoagrone), chalcones (1,2-dihydroparatocarpin A, 2,4,4"-
trihydroxychalcone, 4-hydroxychalcone, cordifolin, isoli-
quiriteginin, licoagrochalcones A-D, licochalcones A and
B, a,2',4,4"-tetrahydroxydihydrochalcone, and kanzonol
Y), coumarins (2'-O-methylglabridin, 3,4-didehydroglab-
ridin, 3'-hydroxy-4'-methoxyglabridin, 4'-O-methylgrab-
ridin, 4'-O-methylkanzonol W, bergapten, gancaonin F,
glabrene, glabrocoumarin, glycycoumarin, glyinflanin H,
hispaglabridin A, hispaglabridin B, isoglycycoumarin,
isoglycyrol, kanzonol U, kanzonol V, kanzonol W,
and licocoumarin A), flavonoids (3-hydroxyglabrol,

6-prenyleriodictyol,  6-prenylpinocembrin,  folerogenin,
glabranin, glabrol, isolicoflavonol, isoschaftoside, isovio-
lanthin, kaempferol, kumatakenin, licoagrodin, licoflava-
none, naringenin, norwogonin, pinocembrin, quercetin,
shinflavanone, and vitexin), isoflavonoids (1-methoxypha-
seollin, 2',4',5,7-tetrahydroxy-3',8-diprenylisoflavanone, 7-
acetoxy-2-methylisoflavone, 7-hydroxy-2-methylisoflavone,
7-methoxy-2-methylisoflavone, 8-prenylphaseollinisoflavan,
genistein, glabraisoflavanone A, glabraisoflavanone B, glab-
roisoflavanone A, glabridin, glabroisoflavanone B, glabrone,
glyasperin B, glyasperin K, glyzaglabrin, glyzarin, isoder-
rone, isoglabrone, isomucronulatol, kanzonol R, kanzonol
T, kanzonol X, licoagroside A, licoricidin, lupiwighteone,
phaseollinisoflavan, prunetin, shinpterocarpin, tetrapterol
G, and wighteone), the lignan licoagrocarpin, stilbenoids
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Figure 20 Additional isoflavonoid ligands examined in this work.
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(3,3",4,5" -tetrahydroxy-4',5-diprenylbibenzyl, 3,3",4,5"-tet-
rahydroxy-5-prenylbibenzyl, 3,3',5"-trihydroxy-4-methoxy-
5-prenylbibenzyl, 3,3",5"-trihydroxy-4-methoxybibenzyl,
3,4",5-trihydroxy-3’,4-diprenylbibenzyl, 3,4",5-trihydroxy-
3’-prenyldihydrostilbene, 3-acetoxy,4,5-dihydroxy-3’-pre-
nyldihydrostilbene, licoagrodione, and uralstilbene), and
triterpenoids (11-deoxoglycyrrhetic acid, 18a-glycyrrhetic
acid, 18a-hydroxyglycyrrhetic acid, 21-hydroxyisoglabrolide,
24-hydroxyglycyrrhetic acid, 24-hydroxyliquiritic acid, 28-
hydroxyglycyrrhetic acid, 3,24-dihydroxy-11,13(18)-oleana-
dien-30-oic acid methyl ester, 3,24-dihydroxy-9(11),12-
oleanadien-30-oic acid, 9(11)-dehydroglycyrrhetic acid, -
amyrin, betulinic acid, desoxoglabrolide, glabric acid, glab-
rolide, glycyrrhetic acid, glycyrrhetol, isoglabrolide, lanosta-
5,24-dien-3-ol, liquiridiolic acid, liquiritic acid, and liquoric
acid).

Licorice (Glycyrrhiza glabra) root has been used for
thousands of years by different cultures and for a variety
of reasons (Fenwick et al. 1990). Although licorice root
has been suggested as a treatment for symptoms of meno-
pause (Ojeda 2003), G. glabra root extracts have been
shown to be inactive in terms of ERa or ERP binding
(Liu et al. 2001). Nevertheless, however, fractionation of
G. glabra extracts has revealed several ER-modulating
components (Khalaf et al. 2010; Simons et al. 2011). Glab-
rene binds to human ER and shows estrogenic activity
(Tamir et al. 2001; Simons et al. 2011). Our in-silico dock-
ing study shows glabrene to be a strongly docking ligand
to both ERa and ERP (-104.8 and —114.9 kJ/mol, respect-
ively). Glabridin, on the other hand, displayed ERa-
selective antagonism (Simons et al. 2011), in contrast to
the docking results that showed glabridin to have ERP

docking selectivity (-15.8 and —-92.9 kJ/mol, respectively).
The chalcones isoliquiritigenin (Tamir et al. 2001; Maggiolini
et al. 2002) and licochalcone A (Rafi et al. 2000), the fla-
vonoid quercetin (Kuiper et al. 1998), and the isoflavonoid
genistein (Ososki and Kennelly 2003) also bind to human
ERa and show estrogenic activity. These ligands all show
negative docking energies with ERa (range from -93.2 to
-99.9 kJ/mol) and ERp (-98.9 to —107.8 kJ/mol).

Lepidium meyenii

Maca (Lepidium meyenii) is native to the central Andes
of Peru (3500-4500 m asl) (Wang et al. 2007). The root
has been used by native Amerindians to improve fertility,
as an aphrodisiac for both men and women. Maca was
found to increase sperm counts and gonadal mass in a
rat model (Chung et al. 2005), to improve copulatory
performance of male mice and rats (Zheng et al. 2000;
Cicero et al. 2001), and to increase litter size (Ruiz-Luna
et al. 2005) and pregnancy rates in female mice (Kuo
et al. 2003). In adult human males, maca treatment led
to increased semen volume and sperm count (Gonzales
et al. 2001) and increased sexual desire (Gonzales et al.
2002; Stone et al. 2009). In addition, maca reduced sexual
dysfunction in postmenopausal women (Brooks et al.
2008) and inhibited estrogen-deficient osteoporosis in
ovariectomized rats (Zhang et al. 2006), but maca
extracts have not shown estrogenic activity (Brooks et al.
2008). None of the L. meyenii phytochemicals investi-
gated in this in-silico study showed remarkable docking
energies, consistent with the non-estrogenic activity
previously reported.
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Ptychopetalum olacoides, P. uncinatum

Muira puama (bark and root extracts of P. olacoides or P.
uncinatum) has been used in Amazonian Brazil during
highly stressful periods, to treat CNS-related ailments,
neuromuscular problems, “nervous weakness”, sexual de-
bility, frigidity, impotence, and rheumatism (Schultes and
Raffauf 1990; Siqueira et al. 1998; Duke et al. 2009). Con-
sistent with these traditional uses, P. olacoides ethanol
root extract has shown memory retrieval improvement in
young and aging mice (da Silva et al. 2004), in-vitro acetyl-
choline esterase inhibitory activity (Siqueira et al. 2003),
and prevention of stress-induced hypothalamic-pituitary-
adrenal hyperactivity (Piato et al. 2008). In addition, Muira
puama formulations have demonstrated efficacy in treat-
ing male erectile dysfunction and low libido (Waynberg

1994) and low sex drive in women (Waynberg and Brewer
2000). A number of clerodane diterpenoids have been
isolated from P. olacoides bark (Tang et al. 2008; Tang
et al. 2009; Tang et al. 2011). Several of these have given
excellent docking energies with the estrogen receptor, but
two in particular, ptycho-6a,7a-diol and ptycholide IV had
remarkable docking to ERP (-122.9 and -114.7 kJ/mol,
respectively). To our knowledge, the estrogenic effects of
Muira puama have not been investigated.

Rhodiola rosea

R. rosea is reputed to strengthen the nervous system, fight
depression, enhance memory, and improve energy levels
(Brown et al. 2002), which has been attributed to adapto-
genic properties of the herb (Spasov et al. 2000; Darbinyan
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et al. 2000). The flavonoids gossypetin, herbacetin, and
rhodiolin, and the lignan (+)-lariciresinol, have been
identified in R. rosea. Lariciresinol showed strong docking
to both ERa and ERp. There are conflicting reports on the
potential estrogenic effects of R. rosea, however (Eagon
et al. 2004; Kim et al. 2005).

Sambucus nigra

The bark, leaves, flowers, fruit, and root extracts of black
elderberry (Sambucus nigra) have been used traditionally
to treat respiratory ailments such as bronchitis, cough, in-
fluenza, and upper respiratory infections (Zakay-Rones
et al. 1995; Krawitz et al. 2011). Compounds identified in
S. nigra extracts include a-amyrin, B-amyrin, a-amyrone,
betulin, campesterol, cycloartenol, lupeol, oleanolic acid,
quercetin, ursolic acid, and dihydrodehydrodiconiferyl

alcohol (9-acetate). Of these, only the flavonoid quercetin
showed good docking to the estrogen receptor. To our
knowledge, there are no reports on the estrogenic activity
of S. nigra extracts.

Silybum marianum

Milk thistle, Silybum marianum, extracts (silymarin) have
been used for centuries to treat liver diseases (Flora et al.
1998). Silymarin contains the flavonoids apigenin, chrysoer-
iol, cisilandrin, eriodictyol, isocisilandrin, isosilandrin A, iso-
silandrin B, isosilybin A, isosilybin B, isosilybin C, isosilybin
D, isosilychristin, kaempferol, naringenin, neosilyhermin A,
neosilyhermin B, quercetin, silandrin A, silandrin B, silya-
mandin, silybin A, silybin B 2,3-dehydrosilybin, silychristin,
2,3-dehydrosilychristin, silychristin B, silydianin, silyhermin,
silymonin, taxifolin; the lignan (Z)-dehydrodiconiferyl
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alcohol; the steroids 24-methylenelanost-8-ene-3,25,28-triol
and marianine; and the triterpenoids silymin A and silymin
B. Silybin B (also called silibinin) has been shown to select-
ively bind to the ERP receptor rather than ERa (Seidlova-
Wauttke et al. 2003b) and previous docking studies have
shown selective docking to ERP over ERa (EI-Shitany et al.
2010). In contrast, our current docking study revealed that
neither silybin A nor silybin B gave negative docking ener-
gies with either ERa or ERa. Quercetin and taxifolin, on
the other hand, gave docking energies comparable to zeara-
lenone with ERB (-106.0, —104.6, and -104.5 kJ/mol, re-
spectively), and these flavonoids have also shown estrogenic
activity (Pliskova et al. 2005). Silymarin modulation of ER}
may be responsible for the estrogenic effects of the extract
(Seidlova-Wuttke et al. 2003b; Pliskova et al. 2005; El-
Shitany et al. 2010).

Tribulus terrestris

Tribulus terrestris has been used to contribute to physical
and sexual strength (De Combarieu et al. 2003; Neychev
and Mitev 2005). The plant is rich in steroidal glycosides
(Wu et al. 1996; Yan et al. 1996; De Combarieu et al. 2003;
Dinchev et al. 2008) and T. terrestris extracts have shown
androgenic effects in animal models (Gauthaman et al.
2002; Gauthaman and Ganesan 2008), but had no influ-
ence on androgen production (Neychev and Mitev 2005)
or gains in strength or muscle mass (Rogerson et al. 2007)
in young men. To our knowledge, there have been no
reports on the estrogenic effects of T. terrestris.

In addition to steroids, several alkaloids (N-trans-feru-
loyltyramine, perlolyrine, terresoxazine, terrestriamide,
tribulusamide A and tribulusamide B) and flavonoids
(isorhamnetin, kaempferol, and quercetin) have been
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found in T. terrestris. In-silico molecular docking has
shown that N-trans-feruloyltyramine docks strongly to
both ERa and ERP, perlolyrine docks strongly to ERp,
terrestribisamide docks strongly to ERa, quercetin docks
strongly to ERp, and the steroid 2,3-dihydroxypregn-16-
en-20-one docks strongly to both ERa and ER.

Trifolium pratense

The alkaloids cis- and trans-clovamide, several coumarins,
flavonoids, and isoflavonoids have been identified in red
clover (Trifolium pratense). Although there have been no
ethnobotanical reports to support it, the presence of
isoflavones has led to suggest that red clover may serve as
a phytochemical alternative to post-menopausal hormone

replacement therapy (Coon et al. 2007). Red clover extract
has been shown to exhibit weakly estrogenic effects in a
rat model (Burdette et al. 2002) and does show in-vitro
ERa and ERP binding ability (Dornstauder et al. 2001;
Beck et al. 2003; Overk et al. 2005). The clinical effective-
ness of red clover has not, however, been demonstrated
(Fugh-Berman and Kronenberg 2001; Booth et al. 2006).
Biochanin A, daidzein, formononetin, and genistein
have been identified as T. pratense isoflavonoids with ER«
and ERp binding activity (Beck et al. 2003; Pfitscher et al.
2008) and these compounds did show a binding prefer-
ence for ERPB. Molecular docking of these ligands also
showed preference for ERPB. They were not, however, the
best docking ligands of T. pratense phytochemicals. The
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_ ° ~ OH ° ~ OH
Bilobanol Cinnamoylechinadiol Cinnamoylepoxyechinadiol
(0]
(0] O
HO™: 4 07 N\F H o/k/\©
HO HO

Bisabolangelone Cinnamoyldihydroxynardol Cinnamoylechinaxanthol

Figure 26 Sesquiterpenoid ligands examined in this work.
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Figure 27 Steroid ligands examined in this work.
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alkaloids cis- and trams-clovamide, and the coumarin
pratenol B showed good docking to both ERa and ERp. Of
the T. pratense isoflavonoids, calycosin and pseudobapti-
genin had more exothermic docking energies to ERf than
did biochanin A, daidzein, formononetin, or genistein.

Trigonella foenum-graecum

Fenugreek (Trigonella foenum-graecum) is used as an antidi-
abetic (Abdel-Barry et al. 1997) and for lowering blood lipid
and cholesterol levels (Prasanna 2000). Phytochemicals iden-
tified in T. foenum-graecum include the alkaloid gentianine;
the coumarins 7-acetoxy-4-methylcoumarin, trigocoumarin,
and trigoforin; the flavonoids 2"-O-p-coumaroylvitexin,

2"-0-p-coumaroylorientin, 6,8-digalactosylapigenin, 8-
galactopyranosyl-6-quinovopyranosylapigenin, 8-3-D-
galactopyranosyl-6-B-D-xylopyranosylapigenin, isoor-
ientin, isovitexin, kaempferol, luteolin, neocorymboside,
orientin, quercetin, trigraecum, vicenin 1, vicenin 2, and
vicenin 3; the isoflavonoid 3’,5,7-trihydroxy-5"-methox-
yisoflavone; p-coumaric acid; and the steroids 25R-
spirosta-3,5-diene (= A*°-deoxyneotigogenin), diosgenin,
furostane-2,3,22,26-tetrol (= trigoneoside aglycone), gito-
genin, neotigogenin, tigogenin, and yamogenin. Quercetin
and 3',5,7-trihydroxy-5"-methoxyisoflavone were the stron-
gest docking ligands for ERP. Fenugreek seed extract has
shown estrogenic activity (Sreeja et al. 2010).
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Figure 28 Additional steroid ligands examined in this work.

Epiarsasapogenin

Turnera aphrodisiaca (syn. T. diffusa)

Damiana leaf has been used in traditional medicine in
Neotropical cultures as a stimulant and aphrodisiac
(Morton 1981), and the herb is marketed as a sexual
enhancer for men and women. Extracts of T. aphrodi-
siaca have shown aphrodisiac activity in mouse
(Helmrick and Reiser 2000; Kumar et al. 2009) and rat
(Estrada-Reyes et al. 2009; Estrada-Reyes et al. 2013)
models, as well as anxiolytic activity in mice (Kumar and
Sharma 2005). Phytochemical investigations have re-
vealed damiana to be rich in flavonoids, including acace-
tin, apigenin, gonzalitosin, laricitrin, luteolin-8-propenoic
acid, orientin, orientin-3"-ketone, pinocembrin, and

syringetin (Piacente et al. 2002; Zhao et al. 2007). The
extract has shown anti-aromatase (due primarily to
acacetin and pinocembrin) and estrogenic activity (due
primarily to apigenin, Z-echinacin, and pinocembrin)
(Zhao et al. 2008). In contrast to these experimental
results, molecular docking revealed the strongest
docking Turnera compound to be luteolin-8-propenoic
acid (-113.1, -123.1 kJ/mol for ERa and ERp, respect-
ively) but this compound was inactive in the aromatase
and estrogen assays. In contrast, pinocembrin, which
was active in both experimental assays, had ERa and
ERP docking energies of -81.4 and -87.9 kJ/mol,
respectively.
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Figure 29 Additional steroid ligands examined in this work.

Furostane-1,2,3,22,26-pentol

Vitex agnus-castus

Vitex agnus-castus, “chaste tree”, has been used as a
tonic for female reproductive disorders, including men-
strual disorders (amenorrhea, dysmenorrhea), premen-
strual syndrome (PMS, corpus luteum insufficiency,
hyperprolactinemia, infertility, menopause, and disrupted
lactation (Daniele et al. 2005; van Die et al. 2013). V.
agnus-castus extracts contain several flavonoids (casticin,
isoorientin, 6"-caffeoylisoorientin, 6" -caffeoylisoorien-
tin-4 " -methyl ether, isovitexin, luteolin, orientin, santin,
5-O-demethyltangeretin, and vitexin), diterpenoids (8,
14-labdadiene-6,7,13-triol-6,7-diacetate, viteagnuside A,

viteagnusin A, viteagnusin B, viteagnusin D, viteagnusin
E, viteagnusin F, viteagnusin G, viteagnusin H, viteagnu-
sin I, viteagnusin J, and vitexlactam A), the isoflavonoid
vitexcarpan, and the phenolic compounds agnucastoside
C and agnuside. Based upon docking energies with ERf,
casticin, santin, vitexcarpan, and the aglycones of agnu-
castoside C and agnuside, could be expected to exhibit
ER modulation. Indeed, V. agnus-castus extracts have
been shown to bind to ERa (Liu et al. 2001) and ERpB
(Jarry et al. 2003). It has been suggested that V. agnus-
castus is a source of 3-ketosteroids with progesterone-
like activity (Bruneton 1999; Dweck 2006).
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Figure 30 Additional steroid ligands examined in this work.
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Figure 31 Additional steroid ligands examined in this work.
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Figure 32 Additional steroid ligands examined in this work.
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Figure 33 Additional steroid ligands examined in this work.
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Figure 34 Additional steroid ligands examined in this work.
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Figure 36 Additional stilbenoid ligands examined in this work.
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Figure 37 Triterpenoid ligands examined in this work.
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Figure 38 Additional triterpenoid ligands examined in this work.
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Figure 39 Additional triterpenoid ligands examined in this work.
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Figure 40 Additional triterpenoid ligands examined in this work.
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Figure 41 Additional triterpenoid ligands examined in this work.
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Figure 42 Miscellaneous phytochemical ligands examined in this work.
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Figure 43 Additional miscellaneous phytochemical ligands examined in this work.
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Table 1 MolDock docking energies of co-crystallized ligands and root-mean-squared deviations between the

co-crystallized ligand and the re-docked poses of the co-crystallized ligand with human estrogen receptors a and f8

Protein PDB code Co-crystallized ligand Egock (kJ/mol) RMSD (A)
ERa 1X7E [5-hydroxy-2-(4-hydroxyphenyl)-1-benzofuran-7-yxJacetonitrile —-100.9 046
1X7R genistein -953 044
3ERD diethylstilbestrol -97.0 0.75
ERB 1U3Q 4-(6-hydroxybenzol[d]isoxazol-3-yl)benzene-1,3-diol -989 140
1U3R 2-(5-hydroxynaphthalen-1-yl)-1,3-benzooxazol-6-ol 1113 0.36
1U3S 3-(6-hydroxynaphthalen-2-yl)-benzo[d]isoxazol-6-ol -107.7 0.35
1USE 2-(4-hydroxyphenyl)benzofuran-5-ol -904 062
1X78 2-(3-fluoro-4-hydroxyphenyl)-7-vinyl-1,3-benzoxazol-5-ol —-1079 046
1X7J genistein -99.9 0.66
1X76 5-hydroxy-2-(4-hydroxyphenyl)-1-benzofuran-7-carbonitrile -1013 042
1X78 [5-hydroxy-2-(4-hydroxyphenyl)-1-benzofuran-7-yllcarbonitrile —-107.7 040
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Compound Plant Source ERa ERB
cimitrypazepine Cimicifuga racemosa -87.6 -755
cis-clovamide Trifolium pratense -119.8 —1249
trans-clovamide Trifolium pratense -113.6 -1220
dihydrodioscorine Dioscorea spp. —60.2 —-64.9
dioscoretine Dioscorea spp. -818 -80.9
dioscorine Dioscorea spp. —62.1 —68.1
dopargine Cimicifuga racemosa -979 —-100.6
dumetorine Dioscorea spp. -77.0 -823
N-trans-feruloyltyramine Tribulus terrestris —103.1 -1138
gentianine Trigonella foenum-graecum —67.2 —64.9
harman Tribulus terrestris —749 —674
harmine Tribulus terrestris —68.8 —-780
harmol Tribulus terrestris —85.8 —-755
lepidiline A Lepidium meyenii -91.2 -96.9
macaridine Lepidium meyenii -780 —782
perlolyrine Tribulus terrestris -934 —-104.6
terresoxazine Tribulus terrestris —66.3 —74.7
terrestribisamide Tribulus terrestris -102.1 -101.2
1,2,34-tetrahydro-6-hydroxy-2-methyl-B-carboline Cimicifuga racemosa -735 —782
Tribulusamide A Tribulus terrestris —48.7 no dock
Tribulusamide B Tribulus terrestris no dock no dock
Table 3 MolDock molecular docking energies (kJ/mol) for chalcones with human estrogen receptors a and

Compound Plant Source ERa ERB
cordifolin Glycyrrhiza glabra -102.2 -110.2
1,2-dihydroparatocarpin A Glycyrrhiza glabra no dock -11.2
4-hydroxychalcone Glycyrrhiza glabra —884 —94.5
isoliquiritigenin Glycyrrhiza glabra -99.9 -102.6
kanzonol Y Glycyrrhiza glabra -1112 —1224
licoagrochalcone A Glycyrrhiza glabra -1024 —1155
licoagrochalcone B Glycyrrhiza glabra -558 -112.0
licoagrochalcone C Glycyrrhiza glabra -90.7 —103.1
licoagrochalcone D Glycyrrhiza glabra -146 —-100.5
licochalcone A Glycyrrhiza glabra -93.2 —-107.8
licochalcone B Glycyrrhiza glabra —-107.8 —-108.9
0,2"44"-tetrahydroxydihydrochalcone Glycyrrhiza glabra -983 —105.0
244" trihydroxychalcone Glycyrrhiza glabra -1034 —104.9
xanthohumol Glycyrrhiza glabra -1168 -116.8
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Table 4 MolDock molecular docking energies (kJ/mol) for coumarins with human estrogen receptors a and 8

Compound Plant Source ERa ERB

7-acetoxy-4-methylcoumarin Trigonella foenum-graecum —746 -776
bergapten Glycyrrhiza glabra =712 -776
coumestrol Glycyrrhiza glabra —894 -99.8

Trifolium pratense

3,4-didehydroglabridin Glycyrrhiza glabra —34.7 -90.0
60,7-dihydroxymaackiain Trifolium pratense -97.7 -107.9
gancaonin F Glycyrrhiza glabra -375 -109.6
glabrene Glycyrrhiza glabra —104.8 —114.9
glabrocoumarin Glycyrrhiza glabra -99.0 —-109.7
glycycoumarin Glycyrrhiza glabra -75.2 -110.2
glycyrol Glycyrrhiza glabra —49.2 -108.8
glyinflanin H Glycyrrhiza glabra —533 -102.1
hispaglabridin A Glycyrrhiza glabra —68.5 —84.3
hispaglabridin B Glycyrrhiza glabra —428 -593
60-hydroxymaackiain Trifolium pratense -95.9 -1029
3"-hydroxy-4"-methoxyglabridin Glycyrrhiza glabra -359 —-86.9
isoglycycoumarin Glycyrrhiza glabra -203 -776
isoglycyrol Glycyrrhiza glabra -108 —66.1
kanzonol U Glycyrrhiza glabra -102.8 —109.9
kanzonol V Glycyrrhiza glabra -237 -713
kanzonol W Glycyrrhiza glabra -204 -82.5
licocoumarin A Glycyrrhiza glabra —549 —24.2
maackiain Trifolium pratense —84.3 -836
medicagol Trifolium pratense -916 -107.6
medicarpin Trifolium pratense -83.7 —79.1
9-O-methylcoumestrol Trifolium pratense —88.2 —100.8
2'-O-methylglabridin Glycyrrhiza glabra —787 —782
4"-O-methylgrabridin Glycyrrhiza glabra -254 —-80.8
4"-O-methylkanzonol W Glycyrrhiza glabra no dock -69.4
mirificoumestan Pueraria mirifica —989 -1130
pisatin Trifolium pratense —84.7 -96.8
pratenol A Trifolium pratense -937 -994
pratenol B Trifolium pratense -104.8 -1120
trifolian Trifolium pratense -82.0 -719
trigocoumarin Trigonella foenum-graecum -936 —98.1
trigoforin Trigonella foenum-graecum -59.0 —66.2
variabilin Trifolium pratense —86.5 —86.9
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Table 5 MolDock molecular docking energies (kJ/mol) for diterpenoids with human estrogen receptors a and 8

Compound Plant Source ERa ERB
antadiosbulbin A Dioscorea spp. -102.7 —68.7
antadiosbulbin B Dioscorea spp. -76.0 —64.9
bafoudiosbulbin A Dioscorea spp. -102.2 -793
bafoudiosbulbin B Dioscorea spp. -95.6 -989
bafoudiosbulbin C Dioscorea spp. —68.0 -93.1
bafoudiosbulbin D Dioscorea spp. -79.3 —75.8
bafoudiosbulbin E Dioscorea spp. —84.1 —62.2
bafoudiosbulbin F Dioscorea spp. -86.0 -736
bafoudiosbulbin_G Dioscorea spp. -56.3 -13.0
60,7a-dihydroxyannonene Ptychopetalum olacoides, P. uncinatum —95.2 -107.3
7,20-dihydroxyannonene Ptychopetalum olacoides, P. uncinatum -91.8 —-105.5
6,7-dihydroxykolavenol Ptychopetalum olacoides, P. uncinatum —94.0 -107.0
diosbulbin A Dioscorea spp. -82.3 —47.7
diosbulbin B Dioscorea spp. -86.7 -81.8
diosbulbin C Dioscorea spp. -83.9 —50.1
diosbulbin D Dioscorea spp. -107.1 -1104
diosbulbin E Dioscorea spp. -922 —108.1
diosbulbin F Dioscorea spp. -111.2 -114.8
diosbulbin G Dioscorea spp. -89.9 -72.0
diosbulbin H Dioscorea spp. -975 -114.1
diosbulbin | Dioscorea spp. no dock  no dock
diosbulbin J Dioscorea spp. -1064 -107.1
diosbulbin K Dioscorea spp. -112.1 —-108.3
diosbulbin L Dioscorea spp. -110.8 -1109
diosbulbin M Dioscorea spp. —103.1 -107.8
8-epidiosbulbin E Dioscorea spp. -783 -728
8-epidiosbulbin E acetate Dioscorea spp. -16.8 —35.0
8-epidiosbulbin G Dioscorea spp. -89.3 -72.8
15,16-epoxy-6,8-dihydroxy-19-nor-13(16),14-clerodadiene-17,12:18,2-diolide-6-acetate  Dioscorea spp. -38.1 -268
7-hydroxykolavelool Ptychopetalum olacoides, P. uncinatum —90.7 —-100.1
7-hydroxysolidagolactone Ptychopetalum olacoides, P. uncinatum —-96.1 -1094
kolavelool Ptychopetalum olacoides, P. uncinatum -894 -94.8
8,14-labdadiene-6,7,13-triol-6,7-diacetate Vitex agnus-castus -924 -90.7
20-O-methylptychonal acetal Ptychopetalum olacoides, P. uncinatum -926 —105.1
7-oxokolavelool Ptychopetalum olacoides, P. uncinatum -916 -99.7
ptycho-6a,7a-diol Ptychopetalum olacoides, P. uncinatum -1036 -1229
ptycholide | Ptychopetalum olacoides, P. uncinatum -101.0 —108.9
ptycholide Il Ptychopetalum olacoides, P. uncinatum —105.1 —104.6
ptycholide IlI Ptychopetalum olacoides, P. uncinatum -986 —109.1
ptycholide IV Ptychopetalum olacoides, P. uncinatum -1037 -114.7
ptychonal Ptychopetalum olacoides, P. uncinatum -93.8 —104.7
ptychonal (hemiacetal) Ptychopetalum olacoides, P. uncinatum -934 -105.9
ptychonolide Ptychopetalum olacoides, P. uncinatum -87.7 -99.9
viteagnuside A (aglycone) Vitex agnus-castus -100.1 -1019
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Table 5 MolDock molecular docking energies (kJ/mol) for diterpenoids with human estrogen receptors a and f (Continued)

viteagnusin A
viteagnusin_B
viteagnusin D
viteagnusin E
viteagnusin F
viteagnusin G
viteagnusin H
viteagnusin |

viteagnusin J

vitexlactam A

Vitex agnus-castus
Vitex agnus-castus
Vitex agnus-castus
Vitex agnus-castus
Vitex agnus-castus
Vitex agnus-castus
Vitex agnus-castus
Vitex agnus-castus
Vitex agnus-castus

Vitex agnus-castus

-874 -94.6
—755 -956
-924 -97.3
-3.7 =370
7.1 no dock
—443 —764
=935 -943
—44.2 —46.1
—54.5 -935
-1024 -99.1

Table 6 MolDock molecular docking energies (kJ/mol) for flavonoids with human estrogen receptors a and 8

Compound Plant Source ERa ERB
acacetin Ginkgo biloba -836 -96.0
Turnera aphrodisiaca
Turnera diffusa
amentoflavone Ginkgo biloba no dock no dock
apigenin Ginkgo biloba —886 -973
Silybum marianum
Turnera aphrodisiaca
Turnera diffusa
Vitex agnus-castus
bilobetin Ginkgo biloba no dock no dock
6"-caffeoylisoorientin Vitex agnus-castus no dock no dock
6"caffeoylisoorientin(4™-methylether) Vitex agnus-castus no dock no dock
8-(5-carboxy-2-methoxyphenyl)-5,7-dihydroxy-4"-methoxyflavone Ginkgo biloba -50.1 —782
casticin Centella asiatica -156 -1064
Vitex agnus-castus
castillicetin Centella asiatica —59.1 —89.5
castilliferol Centella asiatica —48.5 —85.2
chrysin Ginkgo biloba -816 —88.2
chrysoeriol Silybum marianum -946 -102.6
cisilandrin Silybum marianum no dock no dock
2"-O-p-coumaroylorientin Trigonella foenum-gracum no dock no dock
2"-0-p-coumaroylvitexin Trigonella foenum-gracum no dock no dock
cyanidin Ginkgo biloba -89.1 -101.9
Trifolium pratense
2,3-dehydrosilybin Silybum marianum no dock no dock
2,3-dehydrosilychristin Silybum marianum no dock no dock
delphinidin Trifolium pratense -916 -102.3
5-O-demethyltangeretin Vitex agnus-castus —61.5 —-101.1
6,8-digalactosylapigenin Trigonella foenum-gracum no dock no dock
diosmetin Turnera aphrodisiaca -87.8 -102.0
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Table 6 MolDock molecular docking energies (kJ/mol) for flavonoids with human estrogen receptors a and B (Continued)

epigallocatechin
eriodictyol

folerogenin

8-galactopyranosyl-6-quinovopyranosylapigenin

8-galactopyranosyl-6-xylopyranosylapigenin
garbanzol

ginkgetin

glabranin

glabrol

gonzalitosin

gossypetin
(2R35,45)-3,3'4,4' 5,5' 7-heptahydroxyflavan
herbacetin

3-hydroxyglabrol

isocisilandrin

isoginkgetin

isolicoflavonol

isoorientin

isorhamnetin
isoschaftoside
isosilandrin A
isosilandrin B
isosilybin A
isosilybin B
isosilybin C
isosilybin D
isosilychristin
isoviolanthin

isovitexin

isoxanthohumol

kaempferol

kumatakenin

laricitrin

licoagrodin

Turnera diffusa

Ginkgo biloba

Silybum marianum
Glycyrrhiza glabra
Trigonella foenum-graecum
Trigonella foenum-graecum
Trifolium pratense

Ginkgo biloba

Glycyrrhiza glabra
Glycyrrhiza glabra

Turnera aphrodisiaca
Turnera diffusa

Rhodiola rosea

Ginkgo biloba

Rhodiola rosea

Glycyrrhiza glabra

Silybum marianum

Ginkgo biloba

Glycyrrhiza glabra

Tribulus terrestris

Trigonella foenum-graecum
Vitex agnus-castus

Trifolium pratense
Glycyrrhiza glabra

Silybum marianum
Silybum marianum
Silybum marianum
Silybum marianum
Silybum marianum
Silybum marianum
Silybum marianum
Glycyrrhiza glabra
Trigonella foenum-graecum
Vitex agnus-castus
Humulus lupulus

Ginkgo biloba

Glycyrrhiza glabra

Silybum marianum

Tribulus terrestris

Trifolium pretense
Trigonella foenum-graecum
Glycyrrhiza glabra

Turnera aphrodisiaca
Turnera diffusa

Glycyrrhiza glabra

—88.1
—-89.1
—782
no dock
no dock
—84.7
no dock
-903
-96.1
717

-98.6
-89.9
-946
-68.9
no dock
no dock
-97.0

no dock

-952
no dock
no dock
no dock
no dock
no dock
no dock
no dock
no dock

—44.1

no dock

-1025
-90.1

—88.3
=904

no dock

-80.5
-1013
-714
no dock
no dock
-836
no dock
-943
-974
—-106.3

-105.7
-828
-102.1
-101.5
no dock
no dock
-102.0

no dock

-1034
no dock
no dock
no dock
no dock
no dock
no dock
no dock
-69.6
no dock
—6.7

-99.6
-98.8

-101.2
-107.3

no dock
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Table 6 MolDock molecular docking energies (kJ/mol) for flavonoids with human estrogen receptors a and B (Continued)

licoflavanone
liquiritigenin

luteolin

luteolin-8-propenoic acid

malvidin
5-methoxybilobetin
myricetin

naringenin

neocorymboside
neosilyhermin A

neosilyhermin B

norwogonin

orientin

orientin-3"-ketone

pectolinarigenin

peonidin

pinocembrin

6-prenyleriodictyol
8-prenyleriodictyol
6-prenylnaringenin
8-prenylnaringenin
6-prenylpinocembrin

quercetin

rhodiolin
santin
sciadopitysin
shinflavanone
sigmoidin B
silandrin A

silandrin B

Glycyrrhiza glabra
Glycyrrhiza glabra
Trigonella foenum-graecum
Vitex agnus-castus
Turnera aphrodisiaca
Turnera diffusa
Trifolium pratense
Ginkgo biloba
Trifolium pratense
Glycyrrhiza glabra
Silybum marianum
Trigonella foenum-graecum
Silybum marianum
Silybum marianum
Glycyrrhiza glabra
Trigonella foenum-graecum
Turnera aphrodisiaca
Turnera diffusa

Vitex agnus-castus
Turnera aphrodisiaca
Turnera diffusa
Trifolium pratense
Ginkgo biloba
Trifolium pratense
Glycyrrhiza glabra
Turnera aphrodisiaca
Turnera diffusa
Glycyrrhiza glabra
Glycyrrhiza uralensis
Glycyrrhiza glabra
Humulus lupulus
Glycyrrhiza glabra
Ginkgo biloba
Glycyrrhiza glabra
Sambucus nigra
Silybum marianum
Tribulus terrestris
Trigonella foenum-graecum
Rhodiola rosea

Vitex agnus-castus
Ginkgo biloba
Glycyrrhiza glabra
Glycyrrhiza uralensis
Silybum marianum

Silybum marianum

-95.2
-84.9
=920

-113.1

-86.0
no dock
-90.7
-86.3

no dock
—42.8

no dock
—-837
-83.7

-83.8

—84.8
-94.0

-814

—82.1
-102.9
—62.8
-99.2
—49.1
-94.5

no dock
=313

no dock
—63.1
-355

no dock

no dock

-102.2
=971
-103.5

-123.1

-99.9
no dock
-106.2
-954

no dock
—44.5
—676
-91.9
-79.2

—74.3

-99.7
-100.5

—88.1

-91.2
—87.7
-91.7
-102.8
—89.1
-106.0

no dock
-1079
no dock
—774
-92.7
no dock

no dock
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Table 6 MolDock molecular docking energies (kJ/mol) for flavonoids with human estrogen receptors a and B (Continued)

silyamandin Silybum marianum no dock no dock
silybin A Silybum marianum no dock no dock
silybin B Silybum marianum no dock no dock
silychristin Silybum marianum no dock no dock
silychristin B Silybum marianum —69.2 no dock
silydianin Silybum marianum no dock —735
silyhermin Silybum marianum no dock 722
silymonin Silybum marianum no dock —69.2
syringetin Turnera aphrodisiaca -80.5 —95.1
Turnera diffusa
taxifolin Silybum marianum -894 -104.6
3,4"5,8-tetrahydroxyflavone Trifolium pratense -920 —103.1
tricetin Ginkgo biloba —86.2 —-106.2
trigraecum Trigonella foenum-graecum -82.7 -94.4
vicenin 1 Trigonella foenum-graecum no dock no dock
vicenin 2 Trigonella foenum-graecum no dock no dock
vicenin 3 Trigonella foenum-graecum no dock no dock
vitexin Glycyrrhiza glabra -837 —88.5
Vitex agnus-castus
Table 7 MolDock molecular docking energies (kJ/mol) for isoflavonoids with human estrogen receptors a and 8
Compound Plant Source ERa ERB
7-acetoxy-2-methylisoflavone Glycyrrhiza glabra -784 -949
biochanin A Trifolium pratense -90.2 -98.6
calycosin Trifolium pratense —-86.0 -1033
daidzein Trifolium pratense —88.1 -95.0
formononetin Cimicifuga racemosa —835 -985
genistein Glycyrrhiza glabra -934 -989
Trifolium pratense
glabraisoflavanone A Glycyrrhiza glabra no dock no dock
glabraisoflavanone B Glycyrrhiza glabra no dock no dock
glabridin Glycyrrhiza glabra -15.8 -929
glabroisoflavanone A Glycyrrhiza glabra -355 —87.5
glabroisoflavanone B Glycyrrhiza glabra —29.1 —-100.1
glabrone Glycyrrhiza glabra -390 —87.5
glyasperin B Glycyrrhiza glabra -81.7 -90.1
glyasperin K Glycyrrhiza glabra —354 —64.0
glyzaglabrin Glycyrrhiza glabra -99.1 —-103.9
glyzarin Glycyrrhiza glabra -933 -94.2
7-hydroxy-2-methylisoflavone Glycyrrhiza glabra -79.0 -87.3
irilone Trifolium pratense —874 -102.8
isoderrone Glycyrrhiza glabra -27.5 —84.1
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Table 7 MolDock molecular docking energies (kJ/mol) for isoflavonoids with human estrogen receptors a and 8
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(Continued)

isoglabrone Glycyrrhiza glabra —34.1 —-75.1
isomucronulatol Glycyrrhiza glabra -87.1 -1044
kanzonol R Glycyrrhiza glabra -829 -101.7
kanzonol T Glycyrrhiza glabra no dock no dock
kanzonol X Glycyrrhiza glabra -549 -51.2
licoagroside A (aglycone) Glycyrrhiza glabra —-1005 -107.7
licoricidin Glycyrrhiza glabra —41.5 no dock
lupiwighteone Glycyrrhiza glabra -96.1 -107.8
7-methoxy-2-methylisoflavone Glycyrrhiza glabra -79.2 -86.9
1-methoxyphaseollin Glycyrrhiza glabra —76.2 -110.5
phaseollinisoflavan Glycyrrhiza glabra —63.7 -894
pratensein Trifolium pratense —93.7 -1064
8-prenylphaseollinisoflavan Glycyrrhiza glabra no dock —432
prunetin Glycyrrhiza glabra -92.8 -989
pseudobaptigenin Trifolium pratense -94.6 —104.1
shinpterocarpin Glycyrrhiza glabra —65.3 —95.1
2'4"5,7-tetrahydroxy-3"8-diprenylisoflavanone Glycyrrhiza glabra -370 —348
tetrapterol G Glycyrrhiza glabra —499 —100.8
3'5,7-trihydroxy-5"-methoxyisoflavone Trigonella foenum-graecum -974 —-1079
wighteone Glycyrrhiza glabra -758 -101.9
vitexcarpan Vitex agnus-castus -704 -99.5
Table 8 MolDock molecular docking energies (kJ/mol) for lignans with human estrogen receptors a and 8

Compound Plant Source ERa ERB
actaealactone Cimicifuga racemosa -102.8 -1123
(—)-arctigenin Arctium lappa -109.9 -116.2
(2)-dehydrodiconiferyl alcohol Silybum marianum -979 -1106
dihydrodehydrodiconiferyl alcohol (9-acetate) Sambucus nigra -102.7 -97.5
7"-hydroxymatairesinol Podocarpus spicatus -1123 -1173
isolariciresinol Picea excelsa —-76.2 —84.6
(+)-lariciresinol Rhodiola rosea -104.2 -113.7
licoagrocarpin Glycyrrhiza glabra -904 -854
nordihydroguaiaretic acid Guaiacum officinale -102.1 -1064
(=)-nortrachelogenin Pinus palustris -1120 —1254
pinoresinol Picea excelsa -1064 -117.7
secoisolariciresinol Picea abies —-109.1 —114.2
sesamin Ginkgo biloba —99.1 -121.8
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Table 9 MolDock molecular docking energies (kJ/mol) for phenanthrenoids with human estrogen receptors a and 8

Compound Plant Source ERa ERB
batatasin | Dioscorea spp. —84.7 -97.1
denthyrsinin Dioscorea spp. —83.5 -96.7
9,10-dihydro-2,7-dihydroxy-1,3,5-trimethoxyphenanthrene Dioscorea spp. -80.8 —95.7
9,10-dihydro-5,7-dimethoxy-3,4-phenanthrenediol Dioscorea spp. -81.0 -90.1
9,10-dihydro-2,3,5,7-phenanthrenetetrol Dioscorea spp. -780 -83.2
9,10-dihydro-4,6,7-trimethoxy-2-phenanthrenol Dioscorea spp. —885 -99.6
9,10-dihydro-5,6,8-trimethoxy-3,4-phenanthrenediol Dioscorea spp. -729 -87.5
6,7-dihydroxy-2-methoxy-1,4-phenanthraquinone Dioscorea spp. —859 -949
3,5-dimethoxy-2,7-phenanthrenediol Dioscorea spp. —84.6 -935
5,7-dimethoxy-2,3-phenanthrenediol Dioscorea spp. —88.5 -936
diobulbinone Dioscorea spp. no dock no dock
dioscoreanone Dioscorea spp. —88.6 —96.1
hircinol Dioscorea spp. —68.9 —76.3
6-methoxycoelonin Dioscorea spp. —835 -939
2/4,5,6-phenanthrenetetrol Dioscorea spp. —74.7 -829
3,4,6-phenanthrenetriol Dioscorea spp. —743 -799
prazerol Dioscorea spp. -84.6 -96.5
Table 10 MolDock molecular docking energies (kJ/mol) for miscellaneous phenolic ligands with human estrogen
receptors a and 8

Compound Plant Source ERa ERPB
agnucastoside C (aglycone) Vitex agnus-castus —-106.9 —-130.0
agnuside (aglycone) Vitex agnus-castus —103.1 -1103
angeliferulate Angelica sinensis -110.7 -1215
1,3-bis(2,4-dihydroxyphenyl)propane Dioscorea spp. -101.7 —101.1
1,3-bis(2-hydroxy-4-methoxyphenyl)propane Dioscorea spp. -97.1 -949
burkinabin A Echinacea spp. -976 -100.6
burkinabin B Echinacea spp. -101.2 —85.1
caffeic acid Echinacea spp. =721 —74.5
caffeoyl-p-coumaroyltartaric acid Echinacea spp. -983 -129.8
caffeoylferuloyltartaric acid Echinacea spp. —-76.1 -96.2
trans-caffeoylglycolic acid Cimicifuga racemosa -873 -96.7
caftaric acid Echinacea spp. —-105.7 -1121
chicoric acid Echinacea spp. —99.1 -116.1
cimicifugic acid A Cimicifuga racemosa -1029 —124.1
cimicifugic acid B Cimicifuga racemosa -1144 —120.5
cimicifugic acid F Cimicifuga racemosa -126.2 —125.2
cimicifugic acid G Cimicifuga racemosa -1014 -1134
cimiciphenol Cimicifuga racemosa -113.2 -1194
cimiciphenone Cimicifuga racemosa -109.0 -120.8
cimifugin Cimicifuga racemosa -936 -97.1
cimiracemate A Cimicifuga racemosa -1139 -1209
cimiracemate B Cimicifuga racemosa -1144 -127.3
cimiracemate C Cimicifuga racemosa -1105 -115.8
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Table 10 MolDock molecular docking energies (kJ/mol) for miscellaneous phenolic ligands with human

receptors a and B (Continued)
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estrogen

cimiracemate D
p-coumaric acid
diferuloyltartaric acid

6,7-dihydroxy-1,1-dimethylisochroman

2-(3,7-dimethyl-2,6-octadienyl)-4-hydroxy-6-methoxyacetophenone

ferulic acid
fukiic acid
fukinolic acid
irbic acid
isoferulic acid
licoagroaurone
licoagrone
paeonol
(S)-phaselic acid

trichocarpinine

Cimicifuga racemosa

Trigonella foenum-graecum

Echinacea spp.
Dioscorea spp.
Dioscorea spp.
Echinacea spp.
Cimicifuga racemosa
Cimicifuga racemosa
Centella asiatica
Cimicifuga racemosa
Glycyrrhiza glabra
Glycyrrhiza glabra
Dioscorea spp.
Trifolium pratense

Echinacea spp.

-104.2
-65.8
-1026
—684
-99.6
-70.7
-834
-1136
no dock
-68.6
-109.5
no dock
-594
-99.7
-844

—-1285
-69.0
—88.7
—67.5

-104.8
—782
—-88.1

-1273
-176
—73.7

-1179

no dock
-62.5

-109.6

-924

Table 11 MolDock molecular docking energies (kJ/mol) for sesquiterpenoids with human estrogen receptors a and f8

Compound Plant Source ERa ERB
bilobanol Ginkgo biloba —84.8 —89.2
bisabolangelone Angelica sinensis —-80.2 -904
cinnamoyldihydroxynardol Echinacea spp. -99.5 -98.5
cinnamoylechinadiol Echinacea spp. —83.6 -120.8
cinnamoylechinaxanthol Echinacea spp. -876 -949
cinnamoylepoxyechinadiol Echinacea spp. —86.4 -107.9
Table 12 MolDock molecular docking energies (kJ/mol) for steroids with human estrogen receptors a and 8
Compound Plant Source ERa ERB
campesterol Centella asiatica =711 —108.8

Ptychopetalum olacoides

P. uncinatum

Sambucus nigra

Tribulus terrestris

Trifolium pratense
chiapagenin Dioscorea spp. —61.5 no dock
chlorogenin Tribulus terrestris -57 no dock
cholest-5-ene-3,12,16,22-tetrol Dioscorea spp. —495 -82.0
correllogenin Dioscorea spp. —64.3 no dock
cryptogenin Dioscorea spp. -513 —74.8
2,3-dihydroxypregn-16-en-20-one Tribulus terrestris —-105.3 -116.6
2,3-dihydroxyspirost-4-en-12-one Tribulus terrestris no dock no dock
3,16-dihydroxypregn-5-en-20-one Dioscorea spp. -919 -1166
3,16-dihydroxypregnane-12,20-dione Tribulus terrestris -93.7 -956
3,21-dihydroxypregna-5,16-dien-20-one Dioscorea spp. —-103.1 -1214
diosbulbisin A Dioscorea spp. no dock no dock
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Table 12 MolDock molecular docking energies (kJ/mol) for steroids with human estrogen receptors a and B (Continued)

diosbulbisin B Dioscorea spp. no dock no dock
diosbulbisin C Dioscorea spp. no dock no dock
diosbulbisin D Dioscorea spp. -599 no dock
diosgenin Dioscorea spp. —589 no dock

Tribulus terrestris

Trigonella foenum-graecum

diosgenin acetate Dioscorea spp. no dock no dock
diotigenin Dioscorea spp. no dock no dock
doristerol Dioscorea spp. —62.1 -80.3
episarsasapogenin Dioscorea spp. no dock no dock
epismilagenin Dioscorea spp. —534 no dock
ergost-5-ene-3,26-diol Dioscorea spp. -713 —1086
ergost-8(14)-en-3-ol Dioscorea spp. —69.5 —-98.5
furost-20(22)-ene-2,3,26-triol Tribulus terrestris -37.8 —44.1
furost-20(22)-ene-3,26-diol Tribulus terrestris -10.1 —455
furost-5-ene-3,16,26-triol Tribulus terrestris —497 —458
furost-5-ene-3,22,26,27-tetrol Dioscorea spp. -35.1 —46
furost-5-ene-3,22,26-triol Dioscorea spp. —48.2 —24.1
Tribulus terrestris
furosta-5,20(22)-diene-3,26-diol Dioscorea spp. -304 -36.0
furostane-1,2,3,22,26-pentol Dioscorea spp. —40.7 514
gentrogenin Dioscorea spp. —49.8 no dock
gitogenin Tribulus terrestris no dock no dock

Trigonella foenum-graecum

globosterol Ginkgo biloba -314 -113

hecogenin Tribulus terrestris no dock no dock
26-hydroxyfurosta-4,20(22)-diene-3,12-dione Tribulus terrestris -202 —325

24-hydroxyspirost-4-ene-3,12-dione Tribulus terrestris no dock no dock
19-hydroxyyonogenin Dioscorea spp. no dock no dock
igagenin Dioscorea spp. —41.8 no dock
isochiapagenin Dioscorea spp. —49.1 no dock
isodiotigenin Dioscorea spp. —54.5 no dock
isonarthogenin Dioscorea spp. —61.3 no dock
kogagenin Dioscorea spp. -56.5 no dock
marianine Silybum marianum -59 -573

24-methylenelanost-8-ene-3,25,28-triol Silybum marianum -293 —383

neogitogenin Tribulus terrestris —55.1 no dock
neohecogenin Tribulus terrestris -39.7 no dock
neokammogenin Dioscorea spp. no dock no dock
neotigogenin Tribulus terrestris -519 no dock

Trigonella foenum-graecum
neoyonogenin Dioscorea spp. no dock no dock
pentandroside F (aglycone) Tribulus terrestris —375 414
Trigonella foenum-graecum

prazerigenin A Dioscorea spp. —56.1 no dock
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Table 12 MolDock molecular docking energies (kJ/mol) for steroids with human estrogen receptors a and B (Continued)

prazerigenin B Dioscorea spp. —532 no dock
prazerigenin C Dioscorea spp. —60.7 no dock
pregnadienolone Dioscorea spp. -102.7 -1154
protoyonogenin (aglycone) Dioscorea spp. -289 =178
ruscogenin Tribulus terrestris -6.9 no dock
sarsasapogenone Dioscorea spp. -514 no dock
B-sitosterol Tribulus terrestris —65.0 -102.8
smilagenone Dioscorea spp. no dock no dock
25R-spirosta-3,5-diene Trigonella foenum-graecum —54.8 no dock
spirost-4-ene-3,12-dione Tribulus terrestris -67.9 no dock
spirost-4-ene-3,6,12-trione Tribulus terrestris no dock no dock
spirosta-3,5-dien-12-one Tribulus terrestris —50.5 no dock
spirostane-3,23,24-triol Tribulus terrestris no dock no dock
spirostane-3,6,12-trione Tribulus terrestris no dock no dock
steroid G4 Dioscorea spp. no dock no dock
stigmast-8(14)-en-3-ol Dioscorea spp. —453 —75.3
terrestrosin K (aglycone) Tribulus terrestris no dock —60.5
1,2,3,16-tetrahydroxypregnan-20-one Dioscorea spp. —88.7 —489
tigogenin Tribulus terrestris no dock no dock
Trigonella foenum-graecum
tokorogenin Dioscorea spp. -50.3 no dock
tribufuroside C (aglycone) Tribulus terrestris no dock —654
tribufuroside D (aglycone) Tribulus terrestris no dock —13.1
tribufuroside | (aglycone) Tribulus terrestris -29 -350
tribufuroside J (aglycone) Tribulus terrestris no dock —343
trigoneoside (aglycone) Trigonella foenum-graecum —538 —556
2,34-trihydroxypregn-16-en-20-one Dioscorea spp. —82.7 -719
yamogenin Dioscorea spp. -594 no dock
Trigonella foenum-graecum
yonogenin Dioscorea spp. no dock no dock
Table 13 MolDock molecular docking energies (kJ/mol) for stilbenoids with human estrogen receptors a and 8
Compound Plant Source ERa ERB
3-acetoxy-4',5-dihydroxy-3"-prenyldihydrostilbene Glycyrrhiza glabra -119.0 —-118.7
batatasin Il Dioscorea spp. —84.6 —94.7
batatasin Il Dioscorea spp. -833 —926
batatasin IV Dioscorea spp. —-80.7 -934
batatasin V Dioscorea spp. —88.6 —984
demethylbatatasin IV Dioscorea spp. -81.1 -923
dihydropinosylvin Dioscorea spp. -779 —86.2
dihydropinosylvin methyl ether Dioscorea spp. —74.1 -89.3
dihydroresveratrol Dioscorea spp. -83.0 —94.4
24" -dihydroxy-3',5"-dimethoxybibenzyl Dioscorea spp. -874 —-100.3
gancaonin R Glycyrrhiza uralensis —102.1 -107.0



Powers and Setzer In Silico Pharmacology (2015) 3:4

Table 13 MolDock molecular docking energies (kJ/mol) for stilbenoids with human
(Continued)
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estrogen receptors a and 8

licoagrodione Glycyrrhiza glabra
piceatannol Picea abies
3,3'4,5"-tetrahydroxy-4" 5-diprenylbibenzyl Glycyrrhiza glabra
2,2'5,5tetrahydroxy-3-methoxybibenzyl Dioscorea spp.
3,3"4,5"-tetrahydroxy-5-prenylbibenzyl Glycyrrhiza glabra
3,3" 5"-trihydroxy-4-methoxybibenzyl Glycyrrhiza glabra
34" 5-trihydroxy-3'4-diprenylbibenzyl Glycyrrhiza glabra
3,3" 5"-trihydroxy-4-methoxy-5-prenylbibenzyl Glycyrrhiza glabra
34" 5-trihydroxy-3"-prenyldihydrostilbene Glycyrrhiza glabra
tristin Dioscorea spp.
uralstilbene Glycyrrhiza glabra

-98.2 -1169
-85.9 -100.3
-108.9 =171
-874 -99.0
-1114 -115.0
—88.0 -97.7
-1074 -111.0
-1114 -1136
-106.3 -1120
-91.1 -98.7
-101.7 —1221

Table 14 MolDock molecular docking energies (kJ/mol) for triterpenoids with human estrogen receptors a and 8

Compound Plant Source ERa ERB
actaeaepoxide Cimicifuga racemosa no dock no dock
acteol Cimicifuga racemosa -184 no dock
acteol-12-acetate Cimicifuga racemosa no dock no dock
acteol-26-ketone Cimicifuga racemosa -423 no dock
12(3-acetoxycimigenol Cimicifuga racemosa no dock no dock
25-acetoxy-12B-hydroxycimigenol Cimicifuga racemosa no dock no dock
24-acetoxyisodahurinol Cimicifuga racemosa no dock no dock
23-acetoxyshengmanol Cimicifuga racemosa no dock no dock
3'-acetylcimicifugoside (aglycone) Cimicifuga racemosa -304 -255
a-amyrin Sambucus nigra no dock -56
B-amyrin Glycyrrhiza glabra no dock no dock
a-amyrone Sambucus nigra no dock no dock
25-anhydrocimigenol-12(3-acetoxy Cimicifuga racemosa no dock no dock
asiatic acid Centella asiatica no dock no dock
asiaticoside G (aglycone) Centella asiatica no dock no dock
betulafolienetriol Centella asiatica =731 —67.8
betulin Sambucus nigra no dock -26.3
betulinic acid Glycyrrhiza glabra no dock —439
caulophyllogenin Cimicifuga racemosa no dock no dock
centellasapogenol A Centella asiatica no dock no dock
centelloside A (aglycone) Centella asiatica —59.8 —755
cimicidol-3-one Cimicifuga racemosa —47.0 —65.6
cimigenol Cimicifuga racemosa no dock no dock
cimipodocarpaside (aglycone) Cimicifuga racemosa —288 —44
cimiracemoside F (aglycone) Cimicifuga racemosa no dock no dock
cimiracemoside H (aglycone) Cimicifuga racemosa no dock no dock
cimiracemoside | (aglycone) Cimicifuga racemosa —66.2 no dock
corosolic acid Centella asiatica no dock no dock
9(11)-dehydroglycyrrhetic acid Glycyrrhiza glabra no dock no dock
26-deoxyacteol Cimicifuga racemosa —39.7 no dock
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Table 14 MolDock molecular docking energies (kJ/mol) for triterpenoids with human estrogen receptors a and 8
(Continued)

11-deoxoglycyrrhetic acid Glycyrrhiza glabra no dock no dock
desoxoglabrolide Glycyrrhiza glabra no dock no dock
123,21-dihydroxycimigenol Cimicifuga racemosa no dock no dock
2,3-dihydroxy-5-(hydroxymethyl)-24-norolean-12-en-28-oic acid Centella asiatica no dock no dock
3,24-dihydroxy-11,13(18)-oleanadien-30-oic acid methyl ester Glycyrrhiza glabra no dock no dock
3,24-dihydroxy-9(11),12-oleanadien-30-oic acid Glycyrrhiza glabra no dock no dock
23-epi-26-deoxyacteol Cimicifuga racemosa -530 no dock
glabric acid Glycyrrhiza glabra no dock no dock
glabrolide Glycyrrhiza glabra no dock no dock
glycyrrhetic acid Glycyrrhiza glabra no dock no dock
18a-glycyrrhetic acid Glycyrrhiza glabra no dock no dock
glycyrrhetol Glycyrrhiza glabra no dock no dock
21-hydroxycimigenol Cimicifuga racemosa no dock no dock
18a-hydroxyglycyrrhetic acid Glycyrrhiza glabra no dock no dock
24-hydroxyglycyrrhetic acid Glycyrrhiza glabra no dock no dock
28-hydroxyglycyrrhetic acid Glycyrrhiza glabra no dock no dock
21-hydroxyisoglabrolide Glycyrrhiza glabra no dock no dock
24-hydroxyliquiritic acid Glycyrrhiza glabra no dock no dock
6(3-hydroxymaslinic acid Centella asiatica no dock no dock
isoglabrolide Glycyrrhiza glabra no dock no dock
isothankunic acid Centella asiatica no dock no dock
lanosta-5,24-dien-3-ol Glycyrrhiza glabra -556 -523

liquiridiolic acid Glycyrrhiza glabra no dock no dock
liquiritic acid Glycyrrhiza glabra no dock no dock
liquoric acid Glycyrrhiza glabra no dock no dock
lupeol Ptychopetalum olacoides no dock —40.5

P. uncinatum
Sambucus nigra

madasiatic acid Centella asiatica no dock no dock
madecassic acid Centella asiatica no dock no dock
neocimicigenol Cimicifuga racemosa no dock no dock
oleanolic acid Sambucus nigra no dock no dock
quasipanaxadiol Centella asiatica no dock —355

shengmanol Cimicifuga racemosa no dock -30

silymin A Sambucus nigra no dock no dock
silymin B Sambucus nigra no dock no dock
terminolic acid Centella asiatica no dock no dock
2,3,20,23-tetrahydroxy-28-ursanoic acid Centella asiatica no dock no dock
2,3,23-trihydroxy-20-ursen-28-oic acid Centella asiatica no dock no dock
3,6,23-trihydroxy-12-ursen-28-oic acid Centella asiatica no dock no dock
uncargenin C Centella asiatica no dock no dock
ursolic acid Sambucus nigra no dock no dock
zemoside A (aglycone) Centella asiatica no dock no dock




Powers and Setzer In Silico Pharmacology (2015) 3:4

Page 57 of 63

Table 15 MolDock molecular docking energies (kJ/mol) for miscellaneous phytochemicals with human estrogen

receptors a and 8

Compound Plant Source ERa ERB

10-angeloylbutylphthalide Angelica sinensis -96.9 —-107.1
ansaspirolide Angelica sinensis —98.5 -91.5
asiaticin Centella asiatica -96.7 —-109.0
33,7'a:7a,3"a-diligustilide Angelica sinensis —945 —69.6
33,8"6,3"-diligustilide Angelica sinensis -91.3 —726
33,8"6,3"-diligustilidetriepimer Angelica sinensis -98.0 —78.1
dioscorealide A Dioscorea spp. -92.1 -97.1
dioscorealide B Dioscorea spp. —86.2 -98.7
diospongin A Dioscorea spp. —95.1 —104.8
diospongin B Dioscorea spp. -97.1 -103.9
diospongin C Dioscorea spp. -96.1 -107.9
gelispirolide Angelica sinensis —64.7 —84.8
homosenkyunolide H Angelica sinensis —838 —88.7
homosenkyunolide | Angelica sinensis —843 -92.2
homosilphiperfoloic acid Centella asiatica -83.0 -773
levistolide A Angelica sinensis —86.5 —86.4
neodiligustilide Angelica sinensis -783 —6.6
orobanchyl acetate Trifolium pratense -3 -122.8
riligustilide Angelica sinensis -712 -816
senkyunolide O Angelica sinensis —84.8 -91.3
sinaspirolide Angelica sinensis -86.8 —66.2
3,33,73,8-tetrahydro-3,6"7a,7"-diligustilid-8-one Angelica sinensis -80.8 —99.2
estradiol Positive control -92.0 —-100.0
zearalenone Positive control —104.1 -104.9

/

Figure 44 Lowest-energy docked poses of alkaloids [N-trans-feruloyltyramine (aqua), cis-clovamide (red), and trans-clovamide (blue) along
with the co-crystallized ligand, genistein (green)] with ERa (PDB 1X7R). A: Docked poses showing the entire ribbon structure of the protein.
B: Close-up of the docked poses.
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Hydrogen bonds are indicated by blue dashed lines.
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Figure 45 Lowest-energy docked pose of cis-clovamide with ERa (PDB 1X7R) showing the principle amino acid contacts in the binding site.
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Conclusions

This molecular docking study has revealed that almost all
popular herbal supplements contain phytochemical compo-
nents that may bind to the human estrogen receptor and
exhibit selective estrogen receptor modulation. As such,
these herbal supplements may cause unwanted side effects
related to estrogenic activity. For example, estrogenic
agents may be effective and potent growth stimulators of
estrogen-receptor positive tumors and pose a hazard to

patients with breast cancer who have ER-positive tumors
and who are being treated with antiestrogens.

The strongest docking (most exothermic docking energies)
phytochemical ligands were phenolic compounds and the
weakest docking ligands were triterpenoids. A common
binding motif for phenolic ligands in ERa is the hydropho-
bic pocket of Leu 387, Phe 404, Met 388, and Leu 391,
along with edge-to-face m— interactions with Phe 404, and
hydrogen bonds between the phenolic —OH group and the

the binding site. Hydrogen bonds are indicated by blue dashed lines.

Figure 46 Lowest-energy docked pose of N-trans-feruloyltyramine with ERB (PDB 1X7B) showing the principle amino acid contacts in




Powers and Setzer In Silico Pharmacology (2015) 3:4

Page 59 of 63

acid contacts with the isoprenyl groups of the ligand.

Figure 47 Lowest-energy docked pose of the prenylated chalcone kanzonol Y with ERB (PDB 1X7J) showing the hydrophobic amino

b

~

guanidine group of Arg 394 and the carboxylate of Glu
356. Similarly, interactions of phenolic ligands with ERp in-
clude binding in a hydrophobic pocket formed by Leu 298,
Leu 339, and Phe 356; edge-to-face m—m interactions of the
phenolic ligand with Phe 356 and hydrogen boding of the
phenolic —~OH group with the carbonyl group of Leu 339,
the guanidine group of Arg 346, and the carboxylate of
Glu 305. Common hydrogen-bonding residues in the bind-
ing sites of ERa are the guanidine group of Arg 394, the

imidazole group of His 524. Hydrogen-bonding residues of
ERp are Arg 346, His 475.
There are several limitations to these docking results:

e Some of the herbal phytochemicals examined may
not be bioavailable due to limited solubility,
membrane permeability;

e This docking study has only examined docking of
the natural ligands (or their aglycones) and does not

|

&\A‘

Figure 48 Lowest-energy docked poses of pregnane steroids [2,3-dihydroxypregn-16-en-20-one (magenta), 3,16-dihydroxypregn-5-en-20-
one (dark green), 3,21-dihydroxypregna-5,16-dien-20-one (white), and pregnadienolone (bright green)] with ERB (PDB 1U3R). A: Docked
poses showing the entire ribbon structure of the protein. B: Close-up of the docked poses.
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take into account in-vivo hydrolysis or other
metabolic derivatization;

e The docking studies do not account for synergism in
the estrogen receptor binding;

e The molecular docking method itself suffers from
inherent limitations (e.g., the protein is modeled as a
rigid structure without flexibility, solvation of the
binding site and the ligand is excluded, and free-energy
estimation of protein-ligand complexes is largely
ignored) (Yuriev et al. 2011; Yuriev and Ramsland 2013).

e Docking energies do not provide information about
whether strongly binding ligands may function as
agonists or antagonists of the estrogen receptor.
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